Table des matières

SY32 : Vision et Apprentissage

Les objectifs de SY32 sont d'abord de comprendre les différents moyens de former des images, pour ensuite choisir et appliquer un traitement de vision adapté au problème donné. Cette UV est organisée en deux parties dominantes, nous abordons les algorithmes fondamentaux de la vision par ordinateur, puis appliquons l'intelligence artificielle et l'apprentissage machine à des problèmes de vision.
SY32 inclut des projets à rendre, avec un accent fort sur l'analyse et l'évaluation des résultats, pour apporter une approche scientifique à l'UV.

Enseignants :

Programme

1e partie, Concepts classiques :

2e partie, Méthodes d'apprentissage :

Un planning détaillé est disponible dans le Moodle SY32.

Travaux pratiques

Les exercices sont à coder en langage Python avec la bibliothèque NumPy (ainsi que d'autres).
Les développements peuvent être faits sur les ordinateurs de la salle de TP.
Ou bien, => guide de configuration Python

Liste des travaux pratiques :

  1. Stéganographie
  2. Éléments de traitement d’images
  3. Flot optique
  4. Transformations géométriques
  5. Étalonnage des distorsions géométriques
  6. Stéréovision
  7. Apprentissage automatique
  8. Adaboost
  9. Classification de visages
  10. Évaluation d'un détecteur
  11. Classification d'images
  12. Apprentissage profond
  13. Réseaux de neurones convolutifs

Modalités d'évaluation

Deux projets sont prévus :

  1. Mise en correspondance stéréo (en lien avec les concepts classiques)
  2. Détection (par méthode d'apprentissage)

Ils sont évalués, par ordre d'importance, sur le compte-rendu, l'implémentation et l'originalité de l'algorithme choisi, et la qualité des résultats.

Autres informations

Pré-requis :
Connaissances de bases en mathématiques et en algèbre, géométrie 2D et 3D (tel que les coorodonnées et transformations homogènes, les changements de repère…), en statistiques.
Initiation au traitement du signal souhaité (domaine fréquentiel et transformées de Fourier, produit de convolution).
Python pour les sciences (NumPy etc) et Linux nécessaires.

Niveau : GI04

Volume horaire hebdomadaire : 2h CM, 3h TP/TD.